
Rumours of our Demise Have
Been Greatly Exaggerated

Michael Gianarakis
Julian Berton

Obligatory Introduction Slide
Michael Gianarakis

@mgianarakis

Director of SpiderLabs, Asia-Pacific & Japan

SecTalks Brisbane

Have also spoken at the “equally as good” WAHCKon
hacking conference (❤ Nanomebia)

Flat Duck Justice Warrior 🦆

Julian Berton
@julianberton

Application Security Engineer at SEEK

OWASP Melbourne Chapter Lead

Web developer in a previous life

Climber of rocks

butters

Why This Presentation?
• There is a fair bit of hype surrounding crowdsourced security testing and the

result-oriented economic model

• Many have claimed that “traditional” pentesting is dead and the industry will
be “Uberised" as a inevitable future

• Most of the discussion on this topic is either from the bug hunters (great) or
from the bounty companies themselves (mixed bag) - very few address the
point of view of an organisation trying to manage their security

• Intends to address the realities of running a bounty and where they fit in an
organisation’s security testing framework

Bug Bounties

Bug Bounty Basics
• Concept is simple

• Providing a mechanism for security researchers to submit a bug in a
system or application usually with some incentive (cash or kudos)
tied to doing so

• Pioneered and established by the likes of Mozilla, Microsoft and
Google

Bug Bounty Basics
• More recently various startups have entered the space offering to

host or manage bug bounties for organisations and offer them to
their platform or security testers

• Companies such as Bugcrowd, HackerOne, Synack

• Refer to them as HaaS (Hacking as a Service) providers in the talk
(as opposed to "traditional" pen test providers)

Different Types of Bounties
• Public bounties - bounty programs that invite participation from the

public

• Private bounties - invite only programs

• Timed bounties - usually limited to the HaaS companies, a timed
bounty is a bounty (typically private) that is only open for a short
period of time

Bug bounties are essentially pen testing
with a different economic and resource

model

That’s what makes them
interesting

The Hype

Why you should pay attention
• There is a lot hype surrounding bug bounties - primarily driven by

the VC funded Silicon Valley marketing departments

• Bug bounties and HaaS providers represent some interesting
innovation in the security testing space

• Can be a great compliment to your appsec program

• If you perform security testing you should explore the benefits and
tradeoffs

Security Testing Challenges

https://www.trustwave.com/Resources/Library/Documents/Australian-Security-
Testing-Practices-and-Priorities/

Skills Shortage
Tech Team Security Team

Evolving Development Practices

Then
3-6 month deploy to prod cycles (think waterfall)

One software stack per company (e.g. C#, .NET, SQL
Server and IIS

Ratio of security people to developers/infrastructure
is skewed

Now
CD/CI, deploy to prod daily (move faster)

Agile development practices

Developers do everything = devops practices

Ratio of security people to developers/infrastructure
still skewed

Evolving Development Practices

Evolving Development Practices

~30 times a day

Growing Complexity

~150 different
tools, languages,

platforms and
frameworks

The Crowd-Sourced Future
• Bug bounties address the skills shortage via crowd-sourcing

• Unlocks access to a vast resource pool - Bugcrowd and HackerOne
claim testers in the tens of thousands but in theory the resource
pool is potentially much greater than that

• Even private/invite-only bounties can give access to a larger and
more diverse resource pool than what you might find with
traditional in-house or contract testing teams

The Crowd-Sourced Future
Tech Team Security Team

The Crowd-Sourced Future

• The benefits of the crowd-sourced model are obvious

• Scales well - tap into 100s of testers instantly

• Diverse skills sets - researchers specialised in certain classes of
bugs

• Can lead to high quality bugs

The Crowd-Sourced Future

https://pages.bugcrowd.com/2016-state-of-bug-bounty-report

https://pages.bugcrowd.com/2016-state-of-bug-bounty-report

The Result-Based Economic Model
• Organisations running bug bounty programs pay out based on the

successful bug submissions - which represent genuine, validated,
non-duplicated vulnerabilities

• This flips the switch on how most companies pay for for
vulnerabilities

• Instead of paying for a resources time (be it in-house or a consultant)
to find the vulnerabilities you are paying for the bug itself.

• The real innovation of the bug bounty model

The Result-Based Economic Model

• The central benefit to this model is that there are less compromises
that you have make compared to traditional testing activities

• You don’t have to limit yourself to a small number of testers

• You don’t have to limit yourself to a set timeframe

• You don’t have to limit scope to the same extent

The Reality

Can You Run a Bounty?
• Do you have security aware

people to manage the program?

• What is the security maturity of
the systems you want to test?

• Do you have the budget and
traction to fix security in a timely
manner?

Can You Run a Bounty?
• How fragile are your systems?

• Can testing be performed on
production? No? Do you have a
publicly available test
environment?

• Can the production app detect and
block attacks if they are affecting
customers or degrading service?

SEEK’s Private Timed Bounty

• 50 researchers invited and were paid for bugs found.

• Testing occurred on production systems.

• 3 apps in scope.

The Brief
• Overview of company and targets.
• Targets - sites that are in scope.
• Focus Areas - Draw attention to things

you care about.
• Out-of-Scope - Areas that are off

limits.
• Issue Exclusions - Issues you will not

reward.
• Rewards - What you will reward for

issues found.

Submissions

104 issues were
reported in total,

with 40 being
verified issues

Severity

3 High, 7
Medium and 31
Low issues were

reported

Issues by Category

97.5% of all
issues are

categorised in
the OWASP Top

10

About the Researchers

50 researchers
were invited, 15
submitted and
12 were valid

About the Researchers

12 researchers
who submitted

valid issues
came from

Reward Distribution

Reward Distribution

Traffic

SEEK’s Private Ongoing Bounty

• Ongoing, private, managed program (started November 2016).

• 50 researchers invited initially.

• Testing occurs on production systems.

• 3 apps in scope + 2 mobile apps.

Submission Timeline

Severity

Risk Mitigation
Risk

Mitigation

A researcher could perform testing that brings down or disrupts production (if testing on
production systems).

• Program brief state's Denial of Service on any in scope targets.
• Ban researcher from program. They will stop as they will not get paid and get negative

points on the HaaS.
• If you have the ability (e.g. a WAF) you can block the IP address that is causing the issues.
• Use a testing environment for the bug bounty program.

Risk Mitigation
Risk

Mitigation

A researcher could interact with real customers and steal real customer data.

• The brief states not to interact with real customers. Ban researcher from program.
• Existing security controls will prevent most customers being affected.
• Parts of the site that are too hard to test without interacting with customers are taken out

of scope.

Risk Mitigation
Risk

Mitigation

A researcher could exploit a vulnerability and steal sensitive data.

• In the brief it states issues should be reported immediately and sensitive data must not
be exfiltrated.

• Bonuses are rewarded for getting access to sensitive data and systems, incentivising
them to report the issue quickly.

Risk Mitigation
Risk

Mitigation

A researcher could publicly disclose an issue during or after the program.

• They will not receive a reward, will be banned from the program and their reputation
score will suffer.

• Ensure that the business is capable and ready to fix reported issues (especially the high
issues) as quickly as possible. So that the risk is minimised if it did go public.

Lessons Learnt - Managing the Crowd

Lessons Learnt - Managing the Crowd

Lessons Learnt - Managing the Crowd

Lessons Learnt - Managing the Crowd

Lessons Learnt
• Limited control over researcher's actions.

• Unsure if attacks were coming from a real hacker or a researcher.

• Keep the program brief as simple as possible.

• Reward bonuses to focus testing on certain applications or issue types.

• Respond to researchers in a reasonable time frame. Even for invalid issues.

• Testers will eventually trigger operational alerts (Prod testing only).

Revisiting the Economics
• The result-based economic model can be more flexible but it’s not

automatically cost-effective

• Marketing from the HaaS providers like to compare bug bounties
to point-in-time penetration tests but it’s not a worthwhile
comparison - the model is too different

• The common price-per-bug measure is a trap

Revisiting the Economics
• Given that bounties are ongoing and longer term when modelling the economics of

running a program you should use something more akin to Total Cost of Ownership analysis

• Commonly overlooked elements when performing the economic analysis:

• Management fees (if using a HaaS provider)

• Internal management of the program (even if using a HaaS provider)

• Increased load on production equipment and processes

• Downtime, outage or failure expenses

• Diminished performance (i.e. opportunity cost if site is slow or down)

Revisiting the Economics
• Managing the incentives are also not straightforward

• Have to account for the variability of the payout - the cost is
driven by the results (more results = more cost)

• You are competing with other bounty providers for resources - in
a way you become a vendor to the testers

• Payout size directly influences the quality of the testers and the
submissions - in “traditional” pen-testing you might pay more for
low-end bugs but you typically pay less for high-end bugs

Compliance - The Elephant In the Room
• Compliance artificially creates

economic incentive to perform
testing and drives most of the
industry.

• Can be internal (internal audit,
policy etc.) or external (PCI, CBEST
etc.)

• This is why most of us have jobs.

Compliance Testing

• Compliance testing is based around assurance and verification

• Determine that a level of control has been established and
maintained

• This is why the "checklist approach" is so prevalent in compliance
based testing and why every QSA asks to see your methodology.

Compliance Testing
• The incentives in the results-based model don't incentivise testers for

compliance testing.

• Compliance testing is about verification - even if everything is fine or likely
to be fine you still need to verify and more importantly evidence
compliance with the control objectives.

• For a bug hunter spending time verifying controls for a company has no
ROI vs. chasing the bug.

• Only way to get around them is to pay them for the verification activities -
but then you are back to "traditional" testing.

Liability
• One of the big hurdles to overcome with this approach for most

companies is managing liability.

• Most large organisations have a risk management team and a
vendor management team. Bug bounties typically don't make it
past there on liability grounds.

• There is a level of risk tolerance required at the moment

Liability
• Even when using a HaaS where does the liability sit if there is an issue

caused by a tester?

• The standard legal protections (e.g. MSAs, NDAs) do not extend to
anonymous testers

• Enforcing action against anonymous users, cross jurisdiction is
probably not possible

• Liability extends to amount of management contract not the
payouts and contracts for most HaaS providers governed by US law

Liability
• There is still a lot of unanswered questions and ground to cover in

this area before more “traditional” organisations get on board.

• The HaaS providers are likely to evolve to meet this problem as
they try to target organisations outside generally progressive tech
companies

• Will be interesting to see how this develops.

Bottom Line

Should I run a bug bounty?

Maybe

There is no silver bullet in
information security

I feel like we’ve been over this before…..

Key Takeaways
• Bug bounties are just one tool that can be used to manage your

security risk.

Training Inception Development Deployment Monitoring

Web security training
program for tech teams.

Security awareness and
improve security

culture (i.e. Brown
bags, email updates,

etc).

Review system design
for security

weaknesses.

Develop attack
scenarios for high risk

projects.

Add security specific
tests into test suite.

Adopt security
standards and security

release plans.

Automate security
scanning tools into

build pipeline.

Automatically scan
infrastructure and code

for outdated and
vulnerable components.

Perform manual
security testing for

complex or high value
components.

Implement a
continuous testing

program (e.g. A bug
bounty program).

Key Takeaways

• Bug bounties have a lot of inherent benefits but there are a number
of considerations that need to be understood and accounted for

• Always evaluate against your requirements

• Don’t just blindly follow a HaaS or a pen test provider or any other
vendor for that matter - do your homework

Questions?

Michael Gianarakis

@mgianarakis
au.linkedin.com/in/michaelgianarakis
meetup.com/sectalks-brisbane
eightbit.io

Julian Berton
@julianberton
au.linkedin.com/in/julianberton
meetup.com/Application-Security-OWASP-Melbourne
bertonjulian.github.io

NOOBZneedLOVtoo 💕 clamparty ducksec 🦆

http://au.linkedin.com/in/michaelgianarakis
http://meetup.com/sectalks-brisbane
http://eightbit.io
http://au.linkedin.com/in/julianberton
http://meetup.com/Application-Security-OWASP-Melbourne
http://bertonjulian.github.io

